Hydrogenases in Nostoc sp. Strain PCC 73102, a Strain Lacking a Bidirectional Enzyme.

نویسندگان

  • P Tamagnini
  • O Troshina
  • F Oxelfelt
  • R Salema
  • P Lindblad
چکیده

The present study was carried out in order to examine and characterize the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 73102. Southern hybridizations with the probes Av1 and Av3 (hoxY and hoxH, bidirectional hydrogenase small and large subunits, respectively) revealed the occurrence of corresponding sequences in Anabaena variabilis (control), Anabaena sp. strain PCC 7120, and Nostoc muscorum but not in Nostoc sp. strain PCC 73102. As a control, hybridizations with the probe hup2 (hupL, uptake hydrogenase large subunit) demonstrated the presence of a corresponding gene in all the cyanobacteria tested, including Nostoc sp. strain PCC 73102. Moreover, with three different growth media, a bidirectional enzyme that was functional in vivo was observed in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis, whereas Nostoc sp. strain PCC 73102 consistently lacked any detectable in vivo activity. Similar results were obtained when assaying for the presence of an enzyme that is functional in vitro. Native polyacrylamide gel electrophoresis followed by in situ hydrogenase activity staining was used to demonstrate the presence or absence of a functional enzyme. Again, bands corresponding to hydrogenase activity were observed for N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis but not for Nostoc sp. strain PCC 73102. In conclusion, we were unable to detect a bidirectional hydrogenase in Nostoc sp. strain PCC 73102 with specific physiological and molecular techniques. The same techniques clearly showed the presence of an inducible bidirectional enzyme and corresponding structural genes in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis. Hence, Nostoc sp. strain PCC 73102 seems to be an unusual cyanobacterium and an interesting candidate for future biotechnological applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional regulation of Nostoc hydrogenases: effects of oxygen, hydrogen, and nickel.

The transcription of structural genes encoding two hydrogenases in N(2)-fixing cultures of the cyanobacteria Nostoc muscorum and Nostoc sp. strain PCC 73102 were examined by reverse transcription-PCR. A low level of oxygen and addition of nickel induce higher transcript levels of both hydrogenases, whereas molecular hydrogen has a positive effect on the transcription of the genes encoding only ...

متن کامل

Hydrogenases and hydrogen metabolism of cyanobacteria.

Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to bo...

متن کامل

HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120.

The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium.

متن کامل

Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120.

Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases ident...

متن کامل

Draft Genome Sequence of Calothrix Strain 336/3, a Novel H2-Producing Cyanobacterium Isolated from a Finnish Lake

We announce the draft genome sequence of Calothrix strain 336/3, an N2-fixing heterocystous filamentous cyanobacterium isolated from a natural habitat. Calothrix 336/3 produces higher levels of hydrogen than Nostoc punctiforme PCC 73102 and Anabaena strain PCC 7120 and, therefore, is of interest for potential technological applications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 63 5  شماره 

صفحات  -

تاریخ انتشار 1997